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Exercise 1 - Electric field induced by the variable magnetic field

A solenoid of circular cross-section, with radius R, length l, made up of N turns, is traversed by
an alternating current I = I0 cosωt. Determine the electric field induced outside the solenoid.

The magnetic field of a solenoid vanishes outside the solenoid and is uniform inside the solenoid
with the direction of the axis of the solenoid. In cylindrical coordinates (with the spires of the
solenoid in the r, ϕ plane), the magnetic field inside the solenoid is

B⃗ =
µ0NI

ℓ
e⃗z =

µ0NI0
ℓ

cos(ωt)e⃗z . (1)

Consider now a circular path of radius r on the plane of a coil of the solenoid. The induced electric
field is radial E⃗ = Ee⃗ϕ, and the Faraday’s law relates∮

E⃗ · dℓ⃗ = −dΦ

dt
. (2)

The integral of the electric field is, in all the cases∮
E⃗ · dℓ⃗ = E2πr . (3)
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Outside the solenoid r > R, the flux of the magnetic field through the surface enclosed by the
circular path is always the same and depends only on the magnetic field and the area of a spire

Φr>R =

∫
B⃗ · dS⃗ =

µ0NI0
ℓ

cos(ωt)πR2 and
dΦr>R

dt
= −ωπR2µ0NI0

ℓ
sinωt . (4)

Therefore,

Er>R2πr = −ωπR2µ0NI0
ℓ

sin(ωt) → Er>R = − 1

2r
ωR2µ0NI0

ℓ
sin(ωt) . (5)

The electric field decreases as 1/r for r > R. The electric field also varies over time. Therefore,
it will induce a magnetic field, which will induce an electric field, and so on. Every single time,
the intensity will be multiplied by a factor ω. Therefore, for low frequency, this is negligible. At
high frequencies, this will become important and will be fundamental to describing electromagnetic
waves.

Calculate the electric field induced inside the solenoid.
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Inside the solenoid r < R, the flux of the magnetic field depends on the portion of the magnetic
field contained in the circular path

Φr<R =

∫
B⃗ · dS⃗ = µ0NI0 cosωtπr

2 . (6)

The induced electric field is

Er<R2πr = −ωπr2µ0NI0 sinωt → Er<R = −1

2
ωrµ0NI0 sinωt . (7)

Notice how the electric field is 0 at the center of the solenoid, increases linearly in r, and is
orthogonal to B⃗.

Exercise 2 - Mutual inductance — transformer

Consider a solenoid of circular cross-section, with radius R1, length ℓ1, made up ofN1 turns. Inside
it, a second solenoid with radius R2, length ℓ2, and made up of N2 turns are placed. Calculate the
mutual inductance, M , between the two solenoids using the approximation of infinite solenoids.

R1

ℓ1

ℓ2

R2

For an infinite solenoid, the magnetic field B inside is given by:

B = µ0
N

ℓ
I . (8)

The total flux through the two solenoids (1 and 2) is

Φ1 = L1I1 +MI2 , (9)

Φ2 = L2I2 +MI1 . (10)

Where we used the fact that the mutual inductance M = M12 = M21. The self-inductance L1 is
simple to compute since

Φ1→1 = B1N1A1 = µ0
N2

1

ℓ1
I1πR

2
1 = L1I1 . (11)

Similarly, we can compute L2.

L1 = µ0
N2

1

ℓ1
πR2

1 , L2 = µ0
N2

2

ℓ2
πR2

2 . (12)

To compute the mutual inductance, we can compute the flux through the solenoid at 2 due to the
solenoid’s magnetic field at 1

Φ1→2 = MI1 = B1N2A2 = µ0
N1N2

ℓ1
I1πR

2
2 . (13)

We deduce that

M = µ0
N1N2

ℓ1
πR2

2 (14)
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Express M in the case where ℓ2 → ℓ1 and R2 → R1, but with N1 ̸= N2.

In the limit ℓ1 → ℓ, ℓ2 → ℓ and R1 → R, R2 → R

M = µ0
N1N2

ℓ
πR2 =

√
L1L2 (15)

which can be recognized as the square root of the product of the two self-inductances.

Recall that insofar as the wire resistances are negligible, the voltages across the solenoids are
expressed (in the receiver convention):

U1(t) = L1
dI1(t)

dt
+M

dI2(t)

dt
(16)

U2(t) = L2
dI2(t)

dt
+M

dI1(t)

dt
(17)

Considering the case we studied in the previous question, calculate the ratio U2(t)/U1(t) as a
function of N1 and N2. Do you see an interesting application?

U1(t) = µ0
N2

1

ℓ
πR2 dI1(t)

dt
+ µ0

N1N2

ℓ
πR2 dI2(t)

dt
== µ0

N1

ℓ
πR2

(
N1

dI1(t)

dt
+N2

dI2(t)

dt

)
, (18)

and

U2(t) = µ0
N2

2

ℓ
πR2 dI2(t)

dt
+ µ0

N1N2

ℓ
πR2 dI1(t)

dt
== µ0

N2

ℓ
πR2

(
N1

dI1(t)

dt
+N2

dI2(t)

dt

)
. (19)

Therefore, the ratio depends on the ratio of the number of coils

U2

U1
=

µ0
N2

ℓ πR2

µ0
N1

ℓ πR2
=

N2

N1
. (20)

This is the mechanism at the electric transformer’s base to convert the circuit’s tension. https:

//en.wikipedia.org/wiki/Transformer

Exercise 3 - Generator — Rotating Frame

A flat, rectangular, and non-deformable coil, with sides a = 20cm, b = 10cm, is made of a
cylindrical conductor with a diameter of d = 1mm, and resistivity ρ = 1.6× 10−8Ωm. It rotates
at a frequency of 600 revolutions per minute around a vertical axis located in the plane of the coil.
The coil is placed in a magnetic field of intensity B = 1T , perpendicular to the axis of rotation
(figure). What is the expression for the current flowing in the coil? Calculate its effective value.
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Suppose that the magnetic field is in direction e⃗x

B⃗ = Be⃗x . (21)

We can use cylindrical coordinates to describe the motion of the coil. We assume that the coil is
on the plane orthogonal to the vector

S⃗ = Se⃗r = S (cosϕ(t)e⃗x + sinϕ(t)e⃗y) , (22)

where ϕ(t) = ωt, and S = ab. The flux of the magnetic field through the spire is

Φ = B⃗ · S⃗ = Babe⃗x · (cosϕ(t)e⃗x + sinϕ(t)e⃗y) = Bab cosϕ(t) . (23)

The tension induced in the spire due to Faraday’s law

∆V = −dΦ

dt
= Babω sinωt . (24)

The current induced in the spire is

I =
∆V

R
=

Babω

R
sinωt , (25)

where the resistance is

R = ρ
length

section
= ρ

2(a+ b)

π(d2 )
2

(26)

The effective value of the current is

Irms =

√
ω

2π

∫ ω
2π

0

I2(t) =
1√
2

Babω

R
(27)

Describe the mechanical action of B⃗ on the loop.

The four coil segments have an (induced) current that generates a (Laplace) force when inter-
acting with the magnetic field. We are interested in computing the momentum of the forces with
respect to the rotation axis. The forces on the top and bottom segments of the coil have zero
momentum as they are parallel to the rotation axis. The forces on the two sides are

F⃗l = Iae⃗z × B⃗ == IaBe⃗y , F⃗r = Ia(−e⃗z)× B⃗ = −IaBe⃗y . (28)

The side vector to the left side of the coil is v⃗ = − sinϕe⃗x + cosϕe⃗y, and the one to the right side
of the coil is −v⃗. The total momentum of the forces is

M⃗ =
b

2
v⃗ × F⃗l −

b

2
v⃗ × F⃗r = bv⃗ × F⃗l = −IabB sinϕe⃗x × e⃗y = −IabB sinϕe⃗z (29)

The momentum of the forces opposes the rotation of the coil.
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