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Exercise 1 - Conductor in a Uniform Magnetic Field

A metallic rod of length ℓ = 1.5m is placed in a uniform, constant magnetic field B = 0.5T . The
rod is perpendicular to B⃗. It moves with a constant speed v = 4m/s in a direction perpendicular

to both B⃗ and the rod. Calculate the electric potential difference between the ends of the rod.
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We set B⃗ = Be⃗z, and the rod spans the e⃗x direction and moves in the e⃗y direction. Faraday’s Law
relates the circulation of the electric field to the variation of the magnetic flux

∮
∂S

E⃗ · dℓ⃗ = − d

dt
ΦB = − d

dt

∮
S

B⃗ · dS⃗ . (1)

We consider the surface S to be a rectangle with the rod as one of its sides. The induction electric
field is zero everywhere but on the rod itself. The left hand side of (1) is∮

∂S

E⃗ · dℓ⃗ =
∫ ℓ

0

E⃗dx = −∆V . (2)

The magnetic field flux across the surface S is

ΦB =

∮
S

B⃗ · dS⃗ = Bℓy → − d

dt
ΦB = −Bℓ

dy

dt
= −Bℓv . (3)

Where we used dy
dt = v. From Faraday’s Law, we conclude

∆V = Bℓv . (4)

Exercise 2 - Coil in a Time-Varying Uniform Magnetic Field

A coil with a radius r = 4cm, consisting of N = 500 turns, is placed in a uniform magnetic
field that varies over time according to the law B(t) = at+ bt4. The coil is perpendicular to the
magnetic field and is connected to a resistor R = 600Ω. The resistance of the coil is neglected.
Determine the induced electromotive force in the coil.

We directly apply the Faraday’s law and get the electromotive force (emf) :

e = −dΦ

dt
= −NS

dB

dt
= −NS

(
a+ 4bt3

)
(5)

What is the current passing through the resistor at t = 5s? Use a = 1.2 × 10−2Ts−1, and
b = 3× 10−5Ts−4.

The current across the resistor after 5 seconds is

I =
e

R
=

NS
(
a+ 4bt3

)
R

= 1.13 · 10−4A . (6)
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Exercise 3 - Moving Coil

An infinite straight wire, carrying a constant current I, is located in the plane of a square conduc-
tive frame with side a (plane xz) at a distance b (see figure). The frame moves away from the wire
with a constant speed v, orthogonal to the current, and in the plane of the frame (direction e⃗x).
Calculate the induced electromotive force (emf) in the frame due to the magnetic field produced
by the infinite wire as a function of the distance b between the wire and the frame.
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We computed the flux through the square coil in the TD6.

Φ =

∫ a+b

b

µ0Ia

2π

dx

x
=

µ0Ia

2π
log

b+ a

b
(7)

To recap the calculation, the magnetic field generated by the wire on the plane of the square coil
is

B⃗ =
µ0I

2π

1

x
e⃗y (8)

To answer your questions from the last TD, we can convert cylindrical to Cartesian coordinates
using

e⃗r = cosϕe⃗x + sinϕe⃗y , e⃗ϕ = − sinϕe⃗x + cosϕe⃗y . (9)

The angle ϕ is computed anti-clockwise in the xy plane. In our case, the coil is in the zx plane,
meaning ϕ = 0. therefore the direction e⃗ϕ in the plane ϕ = 0 converts to e⃗y. The ingoing flux

dS⃗ = dxe⃗y is

Φ =

∮
B⃗ · dS⃗ =

∫ a+b

b

µ0Ia

2π

dx

x
=

µ0Ia

2π
log

b+ a

b
(10)

The Faraday’s law gives the induced electromotive force induced on the coil:

∆V = −dΦ

dt
= −dΦ

db

db

dt
= −dΦ

db
v (11)

where we used the fact that the only quantity depending on time is b and v = db
dt . To explicit the

calculation

∆V = −µ0Iav

2π

d

db
log

b+ a

b
= −µ0Iav

2π

(
1

b+ a
− 1

b

)
= −µ0Iav

2π

a

b(b+ a)
(12)

The square loop has a resistance R. Calculate the induced current i(t) in the square loop.

The induced current is

i =
∆V

R
= −µ0Iv

2πR

a2

b(b+ a)
(13)
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The current flows in the anti-clockwise direction.

Calculate the power dissipated due to the Joule effect.

The power dissipated by the Joule effect is

P = i2R =

(
µ0Iv

2πR

a2

b(b+ a)

)2

R (14)

Calculate the Laplace force on the square loop.

The Laplace force is given by the contribution of the two pieces of wires parallel to the infinite
wire

F⃗L =
µ0Iia

2π

(
−1

b
+

1

a+ b

)
e⃗x (15)

Repeat the previous questions, considering the distance b fixed and the current in the wire of the
form I(t) = I0 cosωt.

The flux of the magnetic field through the coil is the same as before

Φ =
µ0Ia

2π
log

b+ a

b
. (16)

The Faraday’s law gives the induced electromotive force induced on the coil:

∆V = −dΦ

dt
= −µ0a

2π
log

b+ a

b

dI

dt
=

µ0aωI0 sinωt

2π
log

b+ a

b
(17)

The induced current is

i =
∆V

R
=

µ0aωI0 sinωt

2π
log

b+ a

bR
(18)

The power dissipated by the Joule effect is

P = i2R =

(
µ0aωI0 sinωt

2π
log

b+ a

bR

)2

R (19)

The Laplace force is again

F⃗L =
µ0Iia

2π

(
−1

b
+

1

a+ b

)
e⃗x . (20)

Exercise 4 - Faraday’s Disk

Among the many experiments conducted by Faraday to study the phenomenon of induction, one
was dedicated to demonstrating that a current appears in a moving conductor in a magnetic field.
For this purpose, he considered a conductive disk able to rotate around its axis and be placed
in a uniform magnetic field collinear with the disk’s axis. A circuit containing a galvanometer
connected the center of the disk to the edge of the disk via a sliding contact (see figure). Faraday
observed that when the disk rotated, the needle of the galvanometer experienced a deflection.

ω

B
G

Consider a disk with axis e⃗z, radius R, and thickness a, rotating at speed ω and placed in a
uniform magnetic field B⃗ = Be⃗z.
Explain the origin of the induced current. Calculate the electromotive force. Numerical applica-
tion: B = 0.2T , R = 0.1m, ω = 50rad/s.
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The induced current in the rotating disk originates from the interaction between the magnetic
field and the moving charges within the conductor (the disk, in this case). According to Faraday’s
law of electromagnetic induction, a changing magnetic flux through a conductor induces an elec-
tromotive force, and consequently, if there is a closed path, a current is induced. The electromotive
force can be calculated by considering the movement of a differential ring element within the disk,
at a distance r from the center, with a thickness dr. The velocity v⃗ of this element due to the
disk’s rotation is v⃗ = ω⃗ × r⃗ = ωre⃗z × e⃗r = ωre⃗ϕ, where ω⃗ = ωe⃗z is the angular velocity.

The differential EMF (dV ) induced in this ring due to its motion in the magnetic field is given
by the Lorentz force acting on the charges, which is

dV = (v⃗ × B⃗) · (dre⃗r) = ωrBdr(e⃗ϕ × e⃗z) · e⃗r = ωBrdr (21)

Integrating over all the points of the disk radius

∆V = ωB

∫ R

0

rdr =
1

2
ωBR2 = 0.5× 50Hz × 0.2T × 10−2m2 = 0.05V (22)

Exercise 5 - Self-Inductance of a Toroidal Coil

Consider a toroidal coil with a square cross-section traversed by a current I (side h, inner radius
a, outer radius b, N turns). Using Ampere’s theorem, calculate the magnetic field and its flux.

h

a

b

Symmetry arguments tell us B⃗ = B(z, r)e⃗θ. Using the Ampere’s law on a circle inside the toroidal
coil, we find ∫

B⃗ · dℓ⃗ = µ0Iint = µ0NI (23)

Using B⃗ · dℓ⃗ = B(z, r)rdϕ we find

B(z, r)2πr = µ0NI2πa → B⃗(r) =
µ0NI

2πr
e⃗ϕ (24)

The flux through a square coil is

Φ =

∫
B⃗(r) · dS⃗ =

µ0NI

2π

∫ b

a

1

r
hdx =

µ0NIh

2π
log

b

a
(25)

The flux through the entire toroidal coil is

Φtot = NΦ =
µ0N

2Ih

2π
log

b

a
(26)

From the expression of the magnetic flux, deduce the self-inductance of the toroid L.

The self-inductance is

L =
Φtot

I
=

µ0N
2h

2π
log

b

a
(27)

Calculate the total magnetic energy stored in the toroidal coil.

The magnetic energy density is

EB =
B2

2µ0
=

µ0N
2I2

8π2

1

r2
(28)

The total energy is the integral of EB in the tous volume

EB =

∫
EBdV =

µ0N
2I2

8π2
h2π

∫ b

a

1

r2
rdr =

µ0N
2I2h

4π
log

b

a
(29)
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