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Exercise 1 - Lorentz Force: Cyclotron Frequency

Electrons with a velocity of v = 106m/s enter a region with a uniform magnetic field. They follow
a circular path with a radius of 10cm. What is the angular velocity of the electron? What is the
magnetic field?

The initial transversal velocity of the electrons is v = 106m/s. The angular velocity ω is related
to the transversal velocity v by

ω =
v

R
=

106

0.1
s−1 = 1060Hz (1)

The force on the electron is the Lorentz force

F⃗ = q
(
E⃗ + v⃗ × B⃗

)
. (2)

There is no electric field. The motion is circular. The magnetic force cancels the centrifugal force

qv⃗ × B⃗ = mω2Re⃗r . (3)

Since v = ωRe⃗ϕ we have

qωRe⃗ϕ × B⃗ = mω2Re⃗r . (4)

By simplifying and taking the cross-product with e⃗ϕ, we find

B⃗ − (e⃗ϕ · B⃗)e⃗ϕ =
mω

q
e⃗z . (5)

Which is solved by

B⃗ =
mω

q
e⃗z =

mv

qR
e⃗z . (6)

We used the properties of the cross-product

a⃗× (⃗b× c⃗) = (⃗a · c⃗)⃗b− (⃗a · b⃗)c⃗ , (7)

to prove that
e⃗ϕ × (e⃗ϕ × B⃗) = (e⃗ϕ · B⃗)e⃗ϕ − (e⃗ϕ · e⃗ϕ)B⃗ . (8)

Exercise 2 - Proton in a magnetic field

A proton moves in a uniform magnetic field B = 0.5T applied along the x axis. At t = 0, the
proton has a velocity vx = 1.5 × 105m/s, vy = 0, vz = 2 × 105m/s. Calculate the Lorentz force
acting on the proton and its acceleration at t = 0. Determine the radius of helical motion and
the pitch of the helix (the distance traveled along the axis of the helix in one period).

The Lorentz force on the proton at time t = 0 is

F⃗ = qv⃗ × B⃗ = qvzB e⃗z × e⃗x = qvzB e⃗y . (9)

To solve the equations of motion is useful to use cylindrical coordinates. The general Lorentz force
is radial and will balance the centrifugal force. There are no forces in the x direction. The motion
of the particle is helical with a constant speed in the x direction equal to the initial one and a
circular motion in the yz plane with angular velocity (see the previous exercise)

ω =
Bq

m
. (10)

The radius of the angular motion is computed in terms of the initial angular velocity

R =
v

ω
=

mvz
Bq

. (11)

The period of one revolution is

T =
2π

ω
=

2πm

qB
, (12)

and the pitch is

p = vxT =
2πmvx
qB

. (13)
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Exercise 3 - Mass Spectrometer

A Selenium ion (Se−) enters a region where there is an electric field E = 1.12 × 105V/m and a
uniform magnetic field B = 0.54T , both perpendicular to the ion’s velocity and to each other.
Calculate the particle’s velocity if it passes through this region undeflected.

Suppose for simplicity that E⃗ = Ee⃗x and B⃗ = Be⃗y while the velocity of the particle is along the
z direction v⃗ = ve⃗z. The force has to vanish if the particle passes through this region undeflected.
The Lorentz force is

F⃗ = q
(
E⃗ + v⃗ × B⃗

)
= 0 (14)

Plugging the electric and magnetic fields

0 = q (Ee⃗x + vB e⃗z × e⃗y) = q (E − vB) e⃗x → v =
E

B
. (15)

Doing the numerical analysis

v =
1.12× 105V/m

0.54T
= 2.07× 105m/s . (16)

Upon exiting this region, the ion enters a zone where there is a uniform magnetic field B = 0.54T
perpendicular to its velocity. Knowing that the ion follows a circular trajectory with a radius
r = 31cm, determine the mass of the Selenium ion and the mass number (A) of the isotope.

As we derived in the first exercise, the relation between velocity, radius, and magnetic field

m = −qRB

v
=

1.602× 10−19C0.31m0.54T

2.07× 105m/s
= 1.29× 10−25kg . (17)

The atomic mass is the mass divided by the atomic mass unit

A =
m

1u
=

1.29× 10−25kg

1.66× 10−27kg
= 78 , (18)

which is compatible with the selenium mass number.

Exercise 4 - Lorentz Force: Isotope Separation

One method of separating the isotopes 235U and 238U of uranium (92 protons) was based on
the difference in the radii of their trajectories in a magnetic field. Once ionized, the atoms
are assumed to originate from a common source and move perpendicular to the field. Find the
maximum spatial separation of the beams with a radius of 0.5m for 235U in a field of 1.5T if the
isotopes have the same velocity or if the isotopes have the same energy.

We start with the case where the two isotopes have the same velocity. For isotopes moving at
the same velocity, the radius of their circular path in the magnetic field is given by

R =
mv

qB
, (19)

where m is the mass, v is the velocity, q is the charge, and B is the magnetic field strength. The
radius for the isotopes 238U and 235U , with masses m238 and m235, respectively, are

R238 =
m238v

qB
R235 =

m235v

qB
(20)

The ratio of the two radii is

R238

R235
=

m238

m235
, → R238 =

m238

m235
R235 =

238

235
0.5m = 0.506m , (21)

which corresponds to a 6mm displacement. If the two isotopes have the same kinetic energy, we
have to express their velocity in terms of the kinetic energy

K =
1

2
mv2 , → v =

√
2K

m
. (22)
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The ratio of the radii is

R238

R235
=

m238v238
m235v235

=

√
m238

m235
, → R238 =

√
m238

m235
R235 =

√
238

235
0.5m = 0.503m , (23)

which corresponds to a 3mm displacement.

Exercise 5 - The Hall Effect

The Hall effect, discovered in 1880, is related to the appearance of a potential difference (i.e.,

an electric field) when a magnetic field B⃗ is applied perpendicularly to a conductor carrying a
current j⃗.

b

�E

�j

�B

VA

VB

a

Calculate the Hall field from the equilibrium condition of a conductor’s electron.

The electrons in the conductor are subject to the Lorentz force. The equilibrium condition requires
F⃗ = 0.

F⃗ = q
(
E⃗ + v⃗ × B⃗

)
= 0 (24)

That means E = vB assuming that the trios of E, B, and j are orthogonal.

Determine the Hall constant RH as a function of the number of carriers (n is the carrier density);

by definition, we write E⃗ = RHB⃗ × j⃗. The relationship between the carrier density n and the
current density is j⃗ = nqv⃗.

Since

E = vB =
1

nq
jB , → RH =

1

nq
. (25)

On an indium arsenide InAs probe, a magnetic field of B = 37mT is applied, and a current
I = 150mA is measured for a potential difference of V = 4.7mV (thickness b = 0.12mm),
calculate the Hall constant and the number of carriers per unit volume.

The Hall electric field is uniform. Therefore we compute it directly from the potential difference
E = V/a. The current density is the total current divided by the sectional area of the conductor
j = I/(ab). The Hall constant

RH =
E

jB
=

V

a

ab

IB
=

V b

IB
. (26)

Or numerically

RH =
V b

IB
=

4.7× 10−3V × 1.2× 10−4m

150× 10−3A× 37× 10−3T
= 3.67× 10−5 m3

C
. (27)

The carriers are electrons, and the electrons’ density is

n =
1

RHe
≈ 1.7× 1023m−3 . (28)
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