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Exercise 1 - The Gauss Law

In a region of space, the electric field E⃗ is uniform. Use Gauss’s law to prove that this region
must be electrically neutral.

If E⃗ is uniform we can write it as

E⃗ = Exe⃗x + Ey e⃗y + Ez e⃗z , (1)

with Ex, Ey, and Ez constant. We can use the local version of the Gauss theorem. The divergence
of the electrostatic field is related to the charge density via

∇⃗ · E⃗(x) =
ρ(x)

ϵ0
. (2)

The divergence of the electrostatic field is

∇⃗ · E⃗(x) = ∂xEx + ∂yEy + ∂zEz = 0 + 0 + 0 = 0 , (3)

since the components of E⃗ are all constant. Therefore, ρ = 0 in the region where E⃗ is uniform.

Is the converse true, meaning in a region of space where there is no charge must the electric field
be uniform?

This is false. The Gauss theorem states that the flux of the electrostatic field depends only on the
changes in a region of space. Therefore, the flux of the electrostatic field will vanish in that region.
But we cannot say anything about the electrostatic field itself. In general E⃗ depends on both the
charges inside and outside the region. Consider the example of the electrostatic Coulomb field
generated by a charge q in the origin

E⃗ =
1

4πϵ0

q

r2
e⃗r . (4)

Any region that don’t contain the origin, has 0 charge inside, vanishing flux of the electrostatic
field, but non-vanishing E⃗.

In a region of space, the charge volume density ρ is uniform and positive. Can E⃗ be uniform in
this region?

No. It will contradict the Local version of the Gauss theorem (2).
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Exercise 2 - Linear charge

Consider an infinitely long straight wire carrying a uniform charge density λ. What is the sym-
metry of the problem? What are the invariances?

λ

The problem’s symmetry is cylindrical. The charge distribution is invariant under
rotations around the wire, translations along the wire, and reflections on any plane
containing the wire or orthogonal to the wire. From the symmetry, we can choose a set
of cylindrical coordinates (r, ϕ, z) to study the problem, and we align the z axis with
the wire. From the invariances, we find that the electrostatic field has only a radial
component, and it can only depend on r

E⃗ = Er(r)e⃗r (5)

To be more precise, this is the only time I will write it explicitly. We start with the
most general expression of the electrostatic field in cylindrical coordinates

E⃗ = Er(r, ϕ, z)e⃗r + Eϕ(r, ϕ, z)e⃗ϕ + Ez(r, ϕ, z)e⃗z (6)

1. The invariance under rotations around the wire and translations along the wire
implies that the components of E⃗ depend only on r and not ϕ and z

Er(r, ϕ, z) = Er(r) Eϕ(r, ϕ, z) = Eϕ(r) Ez(r, ϕ, z) = Ez(r) . (7)

2. The invariance under reflections on any plane containing the wire implies Eϕ(r) =
0.

3. The invariance under reflections on any plane orthogonal to the wire implies
Ez(r) = 0.

4. The result is E⃗ = Er(r)e⃗r

Determine the field E⃗ created at a point M located at a distance r from the wire
starting from the integral expression of the Coulomb electrostatic field.

λ
M

dq

r

z �ed

�E

We start by considering the Coulomb electrostatic field generated from a
small piece of wire of length dz of charge dq = λdz. Using the problem’s
symmetries, we can assume the coordinate of the point M = (r, ϕ = 0, z = 0)
and the small piece of wire at the coordinate (r = 0, ϕ = 0, z). The Coulomb
potential generated by dq in the point M is in the direction e⃗d with d2 =
r2 + z2

E⃗dq =
1

4πϵ0

dq

d2
e⃗d =

λ

4πϵ0

dz

r2 + z2
e⃗d . (8)

We can project the E⃗dq on cylindrical coordinates (we use trigonometry)

E⃗dq =
λ

4πϵ0

dz

r2 + z2
r√

r2 + z2
e⃗r +

λ

4πϵ0

dz

r2 + z2
z√

r2 + z2
e⃗z . (9)

The total electrostatic field is the result of summing E⃗dq of all the pieces of
wire (integrating)

E⃗ =

∫ ∞

−∞
E⃗dq =

λ

4πϵ0

∫ ∞

−∞

dz

r2 + z2
r√

r2 + z2
e⃗r+

λ

4πϵ0

∫ ∞

−∞

dz

r2 + z2
z√

r2 + z2
e⃗z .

(10)
We know that because of the invariances of the problem, the e⃗z component

has to vanish (you can also prove it analytically since it is the integral of an odd function of z on
a symmetric interval). To compute the integral on the radial part, we make a change of variable
z = rζ and find

E⃗ =
λ

4πϵ0

1

r

∫ ∞

−∞

dζ

(1 + ζ2)3/2
e⃗r =

λ

2πϵ0

1

r
e⃗r . (11)
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Note that the integral
∫∞
−∞

dζ
(1+ζ2)3/2

= ζ√
1+ζ2

∣∣∣∣∞
−∞

= 2.

Determine the field E⃗ created at a point M located at a distance r from the wire using the Gauss
theorem.

λ
M

�E

S

We use the integral version of the Gauss theorem. The flux of the electrostatic
field through a closed surface is proportional to the enclosed charges Qint

Φ =

∮
E⃗ · dS⃗ =

Qint

ϵ0
. (12)

We choose as a closed surface the cylinder of height h with the wire at the
center with M at the border. The flux of the electrostatic divides into 3
contributions (the lateral l surface, the superior surface s, and the inferior
surface i)

Φ = Φl +Φs +Φi . (13)

The electrostatic field is radial (from equation (5)). The normal of the su-

perior and inferior flux are ±e⃗z. The scalar product E⃗ · dS⃗ = 0 therefore

Φs = Φi = 0 . (14)

The lateral flux is

Φl =

∮
E⃗ · dS⃗ =

∮
Er(r)e⃗r · dS⃗ = Er(r)2πrh . (15)

The charges inside the surface are Qint = λh.

Er(r)2πrh =
λh

ϵ0
−→ Er(r) =

λ

2πϵ0r
(16)

Deduce the potential V (r) at M .

From the invariances of the problem, we can deduce that V is just a function of the radial coordinate
V (r). The electrostatic field is minus the gradient of the electrostatic potential

E⃗ = −∇⃗V . (17)

The gradient in cylindrical coordinates is

∇⃗f(r, ϕ, z) =
∂f

∂r
e⃗r +

1

ρ

∂f

∂φ
e⃗ϕ +

∂f

∂z
e⃗z . (18)

Since V (r) depends only on r the derivatives ∂V (r)
∂φ = ∂V (r)

∂z = 0 and the equation (17) is

dV (r)

dr
= −Er = − λ

2πϵ0r
. (19)

We can integrate from a reference r0 to a general r on both sides.∫ r

r0

dV (r)

dr
dr = − λ

2πϵ0

∫ r

r0

1

r
dr (20)

V (r)− V (r0) = − λ

2πϵ0
log

r

r0
. (21)

We choose conventionally V (r0) = 0 and find

V (r) = − λ

2πϵ0
log

r

r0
. (22)
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Remember that the electrostatic potential is defined up to a constant, allowing us to fix V (r0) = 0.

An infinite straight wire aligned along the x axis has a charge per unit length of λ. A second
straight wire, parallel to the x axis and located at y = d, has a linear charge density of λ2 = −λ/2.
Calculate the electric field at y = d

2 and at y = 3
2d.

λ

d

−λ/2

d/2

3/2d

The electrostatic fields are additive. Therefore, the electrostatic field for two wires is the sum of
the electrostatic fields of the single wires. We set z = 0 for simplicity. If y = d/2, since the charges
of the two wires are opposite, the electrostatic fields point in the same direction, and they sum

E⃗(y) =
λ

2πϵ0y
e⃗y +

λ

4πϵ0(d− y)
e⃗y → E⃗(d/2) =

3λ

2πϵ0d
e⃗y . (23)

Conversely, if y > d, the two electrostatic fields point in opposite directions, and they subtract

E⃗(y) =
λ

2πϵ0y
e⃗y −

λ

4πϵ0(y − d)
e⃗y → E⃗(3d/2) = − λ

6πϵ0d
e⃗y . (24)

A long cylinder with a radius R is charged with a uniform charge density λ. What are the
equipotential surfaces for this cylinder? Considering that the potential is zero (reference) at the
surface of the cylinder, what are the radii of the equipotential surfaces corresponding to V0, 2V0,
and 3V0, respectively? Are they equally spaced?

The electrostatic potential of a linear charged cylinder is the same as that of a wire (22). To
set the potential 0 at r = R we take

V (r) = − λ

2πϵ0
log

r

R
. (25)

To find the radius of the surface at potential V , we can invert the equation

r = Re−
2πϵ0V

λ . (26)

Notice that the dependence is exponential in V . The equipotential surfaces corresponding to V0,
2V0, and 3V0 are not equally spaced.
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Exercise 4 - Surface charge on a plane

Consider an infinite plane carrying a uniform surface charge density σ. What is the symmetry of
the problem? What are the invariances?

The system has a planar symmetry. We have invariance under translation along the plane and
reflection with respect to all planes orthogonal to the charged plane and with respect to the charged
plane itself. This reduces the electrostatic field in Cartesian coordinates (assuming the charged
plane lies on xy) to the form

E⃗ =

{
Ez(z)e⃗z z > 0

−Ez(−z)e⃗z z < 0
(27)

Using Gauss’s theorem, express the electrostatic field E⃗ at a distance z on either side of the plane.
Express the discontinuity of the field when crossing the plane as a function of σ and ϵ0.

σ

�E

�E

Consider as a closed surface a cylinder of height h and radius r orthogonal to the plane. The
flux of the electrostatic field gets a contribution only from the top and bottom surfaces with equal
amounts.

Φ = πr2Ez(h)− πr2(−Ez(−(−h))) = 2πr2Ez(h) (28)

The charge inside the surface is Qint = πr2σ. Therefore, from the Gauss theorem

2πr2Ez(h) = πr2
σ

ϵ0
, → Ez(h) =

σ

2ϵ0
. (29)

The electrostatic field is

E⃗ =

{
σ
2ϵ0

e⃗z z > 0

− σ
2ϵ0

e⃗z z < 0
(30)

The discontinuity is

∆Ez = Ez(0
+)− Ez(0

−) =
σ

ϵ0
. (31)

The graph of Ez(z) is

z

Ez

σ

2ǫ0

−

σ

2ǫ0
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Exercise 5 - Two charged planes

Consider two parallel planes at a distance h charged with surface charge σ and −σ. By exploiting
the symmetry of the problem and using Laplace’s equation, calculate the potential V at any point
between the two planes as a function of h and their potentials V1 and V2.

The problem has the same planar symmetry as before. The Laplace equation for the electro-
static potential is

∇⃗2V = − ρ

ϵ0
. (32)

In this case, the potential depends only on z, and the Laplacian is an ordinary second derivative.
The charge density is 0 anywhere within the plates 0 < z < h and the Laplace equation reduces to

d2

dz2
V (z) = 0 . (33)

The most general function with a vanishing second derivative is V (z) = c1z + c0. Imposing the
boundary conditions V (0) = V1 and V (h) = V2 we find

V (z) = V0 +
V1 − V0

h
z . (34)

Provide the vectorial expression of the electrostatic field E⃗ using E⃗ = −∇⃗V . Find another
expression for the electrostatic field E⃗ between the two planes using the superposition theorem
and the results from exercise 4.

The electrostatic field between the two planes can be immediately obtained by deriving the
potential

E⃗ = − d

dz
V (z)e⃗z = −V1 − V0

h
e⃗z . (35)

Superimposing the electrostatic fields of two charged planes with opposite charges, for 0 < z < h,
we find

E⃗ =
σ

2ϵ0
e⃗z −

−σ

2ϵ0
e⃗z =

σ

ϵ0
e⃗z . (36)

By direct comparison, for this system, we find the relation

V1 − V0 = −σh

ϵ0
(37)

Derive the expression for the capacity of the capacitor formed by the two charged planes.

By definition, the capacitance is the total charge per unit of electrostatic potential energy

C =
Q

∆V
=

Sσ

V0 − V1
=

Sϵ0
h

. (38)
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