
Pietro Donà

Center for Space, Time and the Quantum, Marseille University of Western Ontario, London QISS collaboration pdona@uwo.ca

Spin foam theory. What is it? Where are we?

Group seminar Ludwig-Maximilians-Universität, Munich -19th May 2023

Goals

I am strongly biased

What is a spin foam?

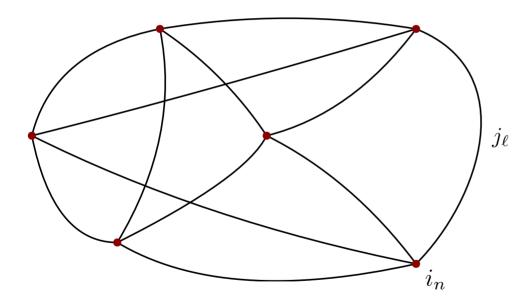
[C. Rovelli and F. Vidotto - 2014]

(Tentative) path integral quantization of General Relativity

Background independent

& Lorentz covariant

Dynamics for LQG (transition amplitude)



Strong analogy with 1D quantum mechanics

Boundary space

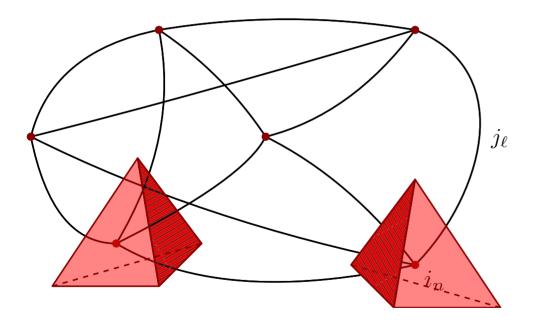
Gravitational degrees of freedom (holonomies and fluxes) truncated on an abstract graph

Kinematical Hilbert space

 $\mathcal{H}_{\Gamma} = L^2(SU(2)^L/SU(2)^N)$

Geometric quantities becomes operators

- e.g. areas, volumes, angles
- discrete spectrum


Spin networks form a basis (CSCO)

• graph, spins and intertwiners

 $|\Gamma, h_{\ell}\rangle = \psi(h_{\ell}) \quad \longleftrightarrow \quad |\Gamma, j_{\ell} i_n\rangle$

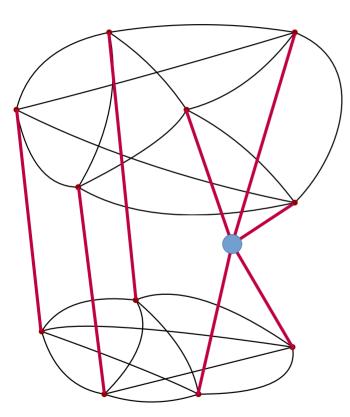
Boundary space

Gravitational degrees of freedom (holonomies and fluxes) truncated on an abstract graph

Kinematical Hilbert space $\mathcal{H}_{\Gamma} = L^2 (SU(2)^L / SU(2)^N)$

Geometric quantities becomes operators

- e.g. areas, volumes, angles
- discrete spectrum


Spin networks form a basis (CSCO)

• graph, spins and intertwiners

 $|\Gamma, h_{\ell}\rangle = \psi(h_{\ell}) \quad \longleftarrow \quad |\Gamma, j_{\ell} i_n\rangle$

Geometric interpretation: discrete chunks of quantum space

Region of space-time

Truncate the space-time degrees on freedom with a 2 complex (vertices, edges, faces) compatible with the boundary graph.

5 valent vertex as elementary building block

2-complex colored by LQG quantum numbers

Assign local amplitudes (spin network basis)

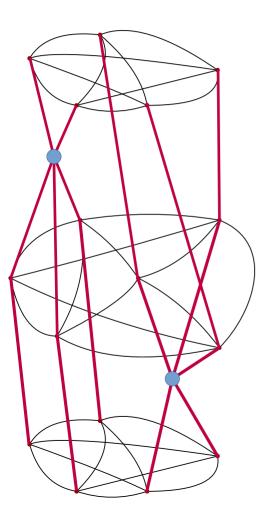
$$Z_{\Delta} = \sum_{j_f, i_e} \prod_f A_f(j_f) \prod_e A_e(i_e) \prod_v A_v(j_f, i_e)$$

Example of a 2-complex between two simple spinnetworks with only one vertex

Quantum Mechanics

Textbook story, exotic language...

Regularize by discretizing time, 1D time lattice, consider the dual (vertices and edges) Edge Hilbert space (initial and final state – position eigenstate)


Local amplitudes (propagators) to each vertex (e.g. free particle)

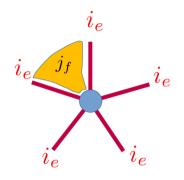
$$K(x_i, x_{i+1}; \Delta t_i) = \sqrt{\frac{m}{2\pi i \Delta t}} \exp\left[\frac{im}{2\Delta t} (x_i - x_{i+1})^2\right]$$

Transition amplitude between two position in one time step

Partition function is the product of all vertex amplitudes integrate on all intermediates states

Region of space-time

Vertex amplitude is the elementary propagator


$$Z_{\Delta} = \sum_{j_f, i_e} \prod_f A_f(j_f) \prod_e A_e(i_e) \prod_v A_v(j_f, i_e)$$

Compose propagators and sum over the quantum numbers of intermediate states

Transition amplitudes between LQG states, sum over histories!

The EPRL model [J. Engle, R. Pereira, C. Rovelli and E. Livine – 2009]

 $\begin{array}{l}
A_{e}(i_{e}) = 2i_{e} + 1 \\
A_{f}(j_{f}) = 2j_{f} + 1
\end{array} \qquad A_{v}\left(j_{f}, i_{e}\right) = \int \prod_{e \in v} \mathrm{d}g_{e} \,\delta(g_{1}) \sum_{m} \prod_{f \in v} D_{j_{f}m_{f_{t}}, j_{f}m_{f_{s}}}^{\gamma j_{f}, j_{f}}(g_{t}^{-1}g_{s}) \prod_{e \ni f} \left(\begin{array}{c} j_{f} \\ m_{p} \end{array} \right)^{(i_{e})}$

One Lorentz holonomy to each face (parallel transport) Derived from BF topological theory + simplicity constraints Unitary Irreducible representation (weak implementation of simplicity constraints) Require trivial parallel transport within the vertex (flat building blocks)

Integrate over all the possible parallel transports (regularized)

What do we know?

Semiclassical limit of the EPRL theory

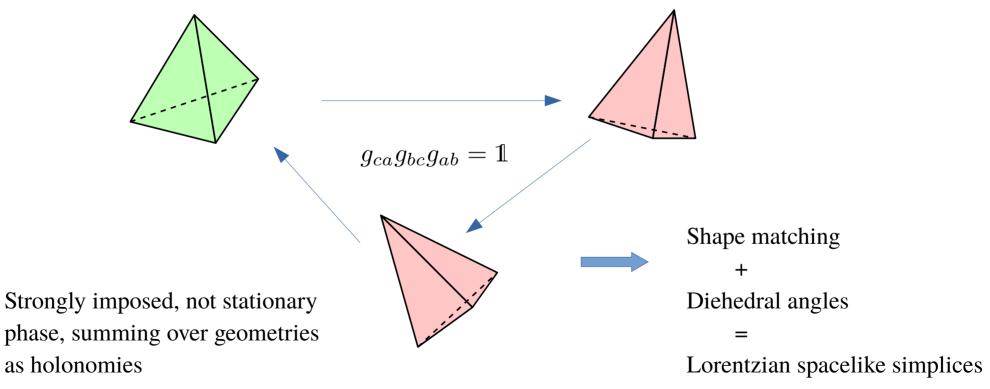
Large quantum numbers regime $A = 8\pi\gamma \hbar G j$ $\hbar \ll 1 \quad \longleftrightarrow \quad j \gg 1$

 $\hbar G = 1$

Path integral dominated by classical trajectories

Vertex amplitude $A_v \approx e^{iS_R}$

Lorentzian 4-simplices


Partition function?

[J. Barrett, ... - 2011]

Local flatness

[P.D. - 2022]

Trivial parallel transport within the vertex (flat building blocks)

Deconstruction

Local flatness Emergence of local Lorentzian geometry

> Model independent

strongly imposed

Simplicity constraints Gluing into global geometries = Regge-like holonomies Perfect gluing $g_f = e^{\Theta \vec{n} \cdot \frac{\vec{\sigma}}{2}}$ Alignment property saddle point

Partition function Extract the angles to form the Regge action

Deconstruction

Local flatness Emergence of local Lorentzian geometry

Model independent strongly imposed

Simplicity constraints Gluing into global geometries = **Regge-like holonomies** Perfect gluing $g_f = e^{\Theta \vec{n} \cdot \frac{\vec{\sigma}}{2}}$ Alignment property saddle point

Partition function Extract the angles to form the Regge action Constrain the face holonomies $g_f = e^{(\Theta + i\xi)\vec{n} \cdot \frac{\vec{\sigma}}{2}}$ flatness $\gamma\Theta + \xi = 0 \ (mod4\pi)$ problem? Distribution analysis

EPRL specifc

Possible paths

Local flatness Emergence of local Lorentzian geometry

Simplicity constraints

Gluing into global geometries

Partition function Constrain the face holonomies

Change the definition of the semiclassical limit into a double limit (large spins and small/refined curvature)

 $\gamma j \Theta \ll 1$

What am I working on?

Numerical calculations of spin foams

Why numerics?

How numerics?

More tools the better

sl2cfoam-next

Explorative

Who numerics?

Myself, Pietropaolo Frisoni, Jared Wogan Where numerics?

sl2cfoam-next

Open source library to compute EPRL amplitudes

Modular (divide & conquer)

Optimized for HPC

User friendly (Julia scripting interface)

Resource demanding (relatively low spins – hybrid technique) [M. Han ... - 2021] Unavoidable approximation (technical downside) [S. Steinhaus ... - 2022] [F. Gozzini - 2021] [P.D and G. Sarno - 2018]

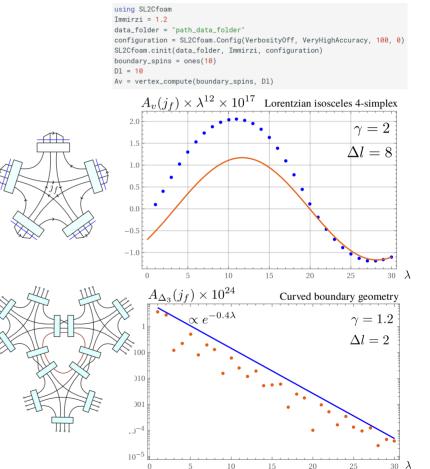
Applications

A step by step tutorial (summary)

• How-To compute a spin foam amplitude? [P.D. Pietropaolo Frisoni 2022]

Verified single vertex asymptotics (confirmation)

• Oscillations governed by the Regge action [P.D. Marco Fanizza, Giorgio Sarno, Simone Speziale 2019]


Three vertices and the "flatness problem" (decisive)

- Amplitudes of curved geometries are suppressed
- Semiclassical limit: large spins and small curvature [P.D. Francesco Gozzini, Giorgio Sarno 2020]

Bubble divergences (new questions)

- Numerical estimates of many IR divergences
- Linear divergence (2-vertices, 6 faces), Convergence (5-vertices, 10 faces), Why?

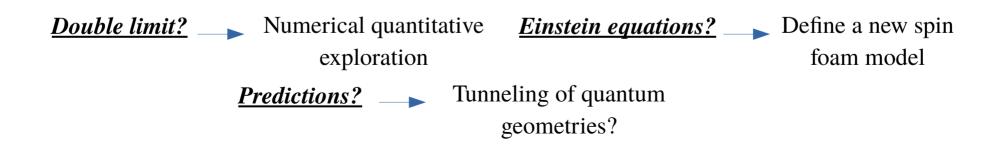
[P.D. Pietropaolo Frisoni 2023] [P.D. Pietropaolo Frisoni, Edward Wilson-Ewing 2022]

What do we not know?

Semiclassical limit of the EPRL theory

Double limit?

Einstein equations?


Refinement?

Predictions?

Matter?

What do we not know?

Semiclassical limit of the EPRL theory

Summary

Spin foam theory provides dynamic to LQG states (path integral as in QM, assign transition amplitude)

Connection with (discrete) GR in the $\hbar \ll 1$ limit

- Single vertex (propagator) works
- The sums over bulk dof has some problems (we had to revise the semiclassical limit as a double limit)

Numerics could be an important new tool

• "Experiments"

Many open questions! The work is not done!

Summary

Spin foam theory provides dynamic to LQG states (path integral as in QM, assign transition amplitude)

Connection with (discrete) GR in the $\hbar \ll 1$ limit

- Single vertex (propagator) works
- The sums over bulk dof has some problems (we had to revise the semiclassical limit as a double limit)

Numerics could be an important new tool

• "Experiments"

Many open questions! The work is not done!

Questions?