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Inflation Recipe

very good

Classical scalar field in FLRW background I . ‘ . ‘ . ‘




Inflation Recipe

Classical scalar field in FLRW background

Local isotropy and homogeneity (CMB, galaxy count)



Inflation Recipe

Various potentials (attrition with observation)
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Inflation Recipe

Inflation -

Primordial 7
fluctuations
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background

Classical scalar field in FLRW background '

Local isotropy and homogeneity (CMB, galaxy count)

Various potentials (attrition with observation)

Quantized fluctuations over classical background



Inflation and Standard Model

Fermions
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Fermion Inflation
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We develop a nonsingular bouncing cosmology using a nontrivial coupling of general relativity to
fermionic fields. The usual big bang singularity is avoided thanks to a negative energy density contribution
from the fermions. Our theory is ghost free since the fermionic operator that generates the bounce is

equivalent to torsion, which has no kinetic terms. The physical system consists of standard general
relativity plus a topological sector for gravity and fermionic matter described by Dirac fields with a
nonminimal coupling. We show that a scale-invariant power spectrum generated in the contracting phase
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Fermion perturbations

“There are no linear perturbation of fermion fields”
Prot. Misao Sasaki, Taipei, December 2015

Linear perturbations of fermionic bilinears
0 (Y My)) = My + p Moy
Classical Background = EV on a state (FLRW symmetries)

() =0 =6 (YMyp) =0



Fermion perturbations

“There are no linear perturbation of fermion fields”
Prof. Misao Sasaki, Taipei, December 2015

Linear perturbations of fermionic bilinears

0 (Y My)) = My + p Moy

Three reasons because this argument is not accurate

1) Dirac fields are pure quantum objects

2) Expectation Value of a single fermion field is not observable

3) Separate quantization of background and perturbation fields.

We need to give a generalization of the definition of “perturbation”.



Bosonic coherent
cosmological perturbation

Scalar Field Inflation I Build a Recipe I

PD, Antonino Marciano’ - arXiv:1605.09337 (10.1103/PhysRevD.94.123517)



Bosonic coherent
cosmological perturbation

Build a Recipe from Scalar Field Inflation I

Detfine the appropriate coherent state

o) = el a(k)al —a*(k)ay 0)

Interpretation: <a\N\oz> :/|Oé(k')\2
k

PD, Antonino Marciano’ - arXiv:1605.09337 (10.1103/PhysRevD.94.123517)



Bosonic coherent
cosmological perturbation

Build a Recipe from Scalar Field Inflation I

Define the appropriate coherent state |a) = efs @®)ai—a"(Rax )

Classical value of the field = Expectation Value on coherent state

6o (@)= (@ 9(a) o) = [ (alk)e™ +a* (B)e™)

k

PD, Antonino Marciano’ - arXiv:1605.09337 (10.1103/PhysRevD.94.123517)



Bosonic coherent
cosmological perturbation

Build a Recipe from Scalar Field Inflation I

Define the appropriate coherent state |a) = efs @®)ai—a"(Rax )

Classical value of the field = Expectation Value on coherent state

6o (@)= (@ 9(a) o) = [ (alk)e™ +a* (B)e™)

k

Classical perturbation fields = Expectation Value on a perturbed
coherent state

(@ + ol ¢(z) [a +0a) = ¢a(t) + Psalz;1)

Perturbed quantities in terms of operator on perturbed state

/\

0G = 81G (a + 0| T, (@) |+ 0av) [0 (50)

PD, Antonino Marciano’ - arXiv:1605.09337 (10.1103/PhysRevD.94.123517)



Bosonic coherent
cosmological perturbation

Build a Recipe from Scalar Field Inflation I

Define the appropriate coherent state |a) = efs @®)ai—a"(Rax )

Classical value of the field = Expectation Value on coherent state

6o (@)= (@ 9(a) o) = [ (alk)e™ +a* (B)e™)

k

Classical perturbation fields = Expectation Value on a perturbed
coherent state

(@ + 0| ¢(x) o+ da) = ¢alt) + dsal, 1)
Perturbed quantities in terms of operator on perturbed state

(@) = —gramy Fe= fm (e 80l d@)0) a +da) o

PD, Antonino Marciano’ - arXiv:1605.09337 (10.1103/PhysRevD.94.123517)




Bosonic coherent
cosmological perturbation

Build a Recipe from Scalar Field Inflation I

Define the appropriate coherent state |a) = efs @®)ai—a"(Rax )
By construction we
recover the
%G standard results ‘)

Classical value erent state

Classical perturbation fields = Expectation Value on a perturbed
coherent state

(@ + 0| ¢(x) o+ da) = ¢alt) + dsal, 1)
Perturbed quantities in terms of operator on perturbed state

(@) = —gramy Fe= fm (e 80l d@)0) a +da) o

PD, Antonino Marciano’ - arXiv:1605.09337 (10.1103/PhysRevD.94.123517)




Fermionic coherent
cosmological perturbation

Fermionic coherent state? - Too naive

) = el Pk a(k)ay —a" (kK)as |0) <—Not in Fock Space

PD, Antonino Marciano’ - arXiv:1605.09337 (10.1103/PhysRevD.94.123517)



Fermionic coherent
cosmological perturbation

Fermionic coherent state? - Too naive

’Oé> _ efd3ka(k f ar ‘O>

Generalized %U(Q) coherent state (pairs)
o) = ef PEaMl 0t Warrbis ) <> |i])

| Density of pairs
b+ he) @l o) = (@l [ € Tl = [ €7
: k k
Infinitesimal rotation around a finite one

a'a+b'h— 1) ‘ﬁ -+ 5ﬁ>

PD, Antonino Marciano’ - arXiv:1605.09337 (10.1103/PhysRevD.94.123517)



Fermionic coherent
cosmological perturbation

Fermionic coherent state? - Too naive

’Oé> _ efd3ka(k f ar ‘O>

Generalized SU(2) coherent state (pairs)

o) = oS Pka(k)al b, —a” (K)artb_ky 0) <> |7)

Classical perturbations:

A

0G = 8 (1 + 01 T,w(w, V) |7+ 0m) ’O(cm)

PD, Antonino Marciano’ - arXiv:1605.09337 (10.1103/PhysRevD.94.123517)



Fermionic coherent
cosmological perturbation

Fermionic coherent state? - Too naive

’Oé> _ efd3ka(k f ar ‘O>

Generalized SU(2) coherent state (pairs)

o) = oS Pka(k)al b, —a” (K)artb_ky 0) <> |7)

Compute relevant cosmological quantities:

Pe = lim {a + da| {(z)(y) | + 6a) [0(50)?

Yy—x

PD, Antonino Marciano’ - arXiv:1605.09337 (10.1103/PhysRevD.94.123517)



Non Bunch Davies
group coherent states

Inflation initial state?

Heavily rely on the selected
quantum state

estimate of the non-Gaussianities,
power spectra of CMBR,

tensor to scalar ratio parameter.




Non Bunch Davies
group coherent states

Inflation initial state?

Heavily rely on the selected
quantum state

estimate of the non-Gaussianities,
power spectra of CMBR,

tensor to scalar ratio parameter.

Bunch Davies vacuum (dS spacetime isometries, approach Minkowski
vacuum in deep UV, time-independent, stationary state)

Generalization to Non-Bunch Davies vacuum (misleading name,
excited initial state for inflation, most general solution of the mode
equation, parametrize our ignorance on the pre-inflationary era)



Non Bunch Davies
group coherent states

Inflation initial state?

Generalization to Non-Bunch Davies vacuum (parametrize our
ignorance on the pre-inflationary era)

* 2 2
up PP () = arur, P (n) + Brui” P (n) axl? — 18l = 1

Equivalent to:

~

al
k

—

L = ajal + Bra_g OnBD) = exp [ (|k[)ata’ . — 7*(|k|)a;;a—;;‘] 05D)
y

sinh (|7(18))|)

Suddhasattwa Brahma, PD, Antonino Marciano’ - arXiv:1612.00760



Non Bunch Davies
group coherent states

Inflation initial state?

Generalization to Non-Bunch Davies vacuum (parametrize our
ignorance on the pre-inflationary era)

éVBD(n) _ OékukBD( )_|_5 ’LL*BD<77) ‘ak’2 . |5k|2 —1

Equivalent to:

at = akaq + Bra_j OnNBD) = exp [/k ’Y(W)CL,E»GT_E — W*(Va)%a k] 0BD)
* (k1) -
ay = cosh ( |v(|k]) By = —— sinh ( [v(|k]|)

Exactly an SU(1,1) coherent state:

K. —qlal
— 40y
K_ = arpa_p
1
_ t T
K3 = 3 (aEaE +a_qa_p+ 1)

Suddhasattwa Brahma, PD, Antonino Marciano’ - arXiv:1612.00760



Non Bunch Davies
group coherent states

Probe the SU(N,M) coherent state case, the generators in a
Schwinger-like representation are:

'i' T T -i- . iZl,...,n
_akiaki,ﬂ@n v,o=1,...,n Qy,, Qg ior —1....m
toge o , 1=1,...,n

Gg; g, flon 3,79 =1,...,m ap,aq; for i=1....m

Most general form of a coherent state up to irrelevant phases
exp {/ alki, q;)a), al — @*(kiaqj)akiaqj} 0)
ki q;

Invariance under translations fix k; = g;

Invariance under rotations fix a(k;) = a(|k;])

Z/k Oz(‘kzDCL};zGJT_kz —a*(ki)akiaki] |0>
k; @

Suddhasattwa Brahma, PD, Antonino Marciano’ - arXiv:1612.00760
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Conclusions

Introduced a new framework for cosmological
perturbation based on coherent states.

e Reproduce the literature

o Generalization to non scalar species

o Fermion fields can indeed contribute to linear cosmological
perturbation

Non Bunch-Davies vacuum (initial state for single

scalar field inflation) can be interpreted as a
SU(1,1) coherent state

« Generalization to other groups is not possible (not compatible with
isotropy and homogeneity)
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