Pietro Dona'

(Centre de Physique Theorique - Marseille)

Cosmological applications of coherent states

16th January 2016

Based on: PD, Antonino Marciano' - arXiv:1605.09337 (10.1103/PhysRevD.94.123517) Suddhasattwa Brahma, PD, Antonino Marciano' - arXiv:1612.00760

The Big Bang puzzle

The Big Bang puzzle

Classical scalar field in FLRW background

Classical scalar field in FLRW background

Local isotropy and homogeneity (CMB, galaxy count)

Various potentials (attrition with observation)

$$\phi\left(x,t\right) = \bar{\phi}\left(t\right) + \delta\phi\left(x,t\right)$$
Primordial fluctuations
Cosmic microwave background

Classical scalar field in FLRW background

Local isotropy and homogeneity (CMB, galaxy count)

Various potentials (attrition with observation)

Quantized fluctuations over classical background

Inflation and Standard Model

Fermion Inflation

		nep-tn/0301129 FERMILAB-Pub-03/014-A
	Spinors, Inflation, and	Non-Singular Cyclic Cosmologies
	C. Enr Department of Uni	Armendáriz-Picón rico Fermi Institute, f Astronomy and Astrophysics, viversity of Chicago.
	Pa	atrick B. Greene
	Physics Letters B 745 (2015) 97-104	ratory,
	Contents lists available at ScienceDirect Physics Letters B	homogeneous, spinor field provides entum tensor of a flat Friedmann- to exist, appropriate choices of the
ELSEVIER	www.elsevier.com/locate/physletb	
Stephon Alexander ^a , Yi-Fu Cai ^a Center for Cosmic Origins and Department of Physics ^b Department of Physics, McGill University, Montréal, O ^c Center for Eight Depay and Particle Physics & Depart	y and the termion curvaton mechanism ^b , Antonino Marcianò ^c and Astronomy, Dartmouth College, Hanover, NH 03755, USA QC H3 ment d	CrossMark
	PHYSICAL REVI	IEW D 90 , 123510 (2014)
article info	a Fermi-bounce cosmology an	nd scale-invariant power spectrum
Article history: Received 23 February 2015 Received	Stephon Alexander, ^{1,*} Cosimo Bambi, ^{2,†} ¹ Center for Cosmic Origins and Dartmouth College, Hano ² Center for Field Theory and Particle Phy 200433 (Received 27 February 20)	Antonino Marcianò, ^{2,‡} and Leonardo Modesto ^{2,§} I Department of Physics and Astronomy, over, New Hampshire 03755, USA ysics & Department of Physics, Fudan University, Shanghai, China 014; published 5 December 2014)
	We develop a nonsingular bouncing cosmolo fermionic fields. The usual big bang singularity is from the fermions. Our theory is ghost free sir equivalent to torsion, which has no kinetic ter relativity plus a topological sector for gravity nonminimal coupling. We show that a scale-inva	ogy using a nontrivial coupling of general relativity to s avoided thanks to a negative energy density contribution nce the fermionic operator that generates the bounce is rms. The physical system consists of standard general and fermionic matter described by Dirac fields with a ariant power spectrum generated in the contracting phase

Fermion Inflation

	nep-tn/0301129	
	FERMILAB-Pub-03/014-A	
	Spinors, Inflation, and Non-Singular Cyclic Cosmologies	
	C. Armendáriz-Picón [*]	
	Enrico Fermi Institute, Department of Astronomy and Astrophysics	
	University of Chicago.	
	Patrick B. Greene	
	Group,	
	Physics Letters B 745 (2015) 97-104	
	Contents lists available at ScienceDirect homogeneous, spinor field provides	
	Physics Letters B to exist, appropriate choices of the	
	"What you are doing is all wrong!"	
101al	What you are doing is an wrong!	
	Prof. Misao Sasaki, Taipei, December 2015	
rermi-pounce cosmol	ogy and the fermion curvaton mechanism	
Stephon Alexander ^a , Yi-Fu	Cai ^b , Antonino Marcianò ^c	
* Center for Cosmic Origins and Department of P	invision and Astronomy, Dartmouth College, Hanover, NH 03 755, USA	
° Department of Physics, Midail University, Mont ° Center for Field Theory and Particle Physics & D	epartment o	
	PHYSICAL REVIEW D 90, 123510 (2014)	
article info	^a Fermi-bounce cosmology and scale-invariant power spectrum	
Article history: Received 23 February 2015	A Stephon Alexander ^{1,*} Cosimo Bambi ^{2,†} Antonino Marcianò ^{2,‡} and Leonardo Modesto ^{2,§}	
Received	¹ Center for Cosmic Origins and Department of Physics and Astronomy,	
	Dartmouth College, Hanover, New Hampshire 03755, USA	
	200433 Shanghai, China	
	(Received 27 February 2014; published 5 December 2014)	
	We develop a nonsingular bouncing cosmology using a nontrivial coupling of general relativity to	
	form the fermions. Our theory is ghost free since the fermionic operator that generates the bounce is	
	equivalent to torsion, which has no kinetic terms. The physical system consists of standard general	
	equivalent to torsion, which has no kinetic terms. The physical system consists of standard general relativity plus a topological sector for gravity and fermionic matter described by Dirac fields with a populing. We show that a scale inverient power spectrum generated in the contracting phase	

Fermion perturbations

"There are no linear perturbation of fermion fields" Prof. Misao Sasaki, Taipei, December 2015

Linear perturbations of fermionic bilinears

 $\delta\left(\bar{\psi}M\psi\right) = \delta\bar{\psi}M\psi + \bar{\psi}M\delta\psi$

Classical Background = EV on a state (FLRW symmetries)

$$\left<\psi\right>=0\to\delta\left(\bar{\psi}M\psi\right)=0$$

Fermion perturbations

"There are no linear perturbation of fermion fields" Prof. Misao Sasaki, Taipei, December 2015

Linear perturbations of fermionic bilinears $\delta \left(\bar{\psi} M \psi \right) = \delta \bar{\psi} M \psi + \bar{\psi} M \delta \psi$

Three reasons because this argument is not accurate

- 1) Dirac fields are pure quantum objects
- 2) Expectation Value of a single fermion field is not observable
- 3) Separate quantization of background and perturbation fields.

We need to give a generalization of the definition of "perturbation".

Build a Recipe from Scalar Field Inflation

Define the appropriate coherent state

$$|\alpha\rangle = e^{\int_k \alpha(k)a_k^{\dagger} - \alpha^*(k)a_k} |0\rangle$$

Interpretation:
$$\langle \alpha | \hat{N} | \alpha \rangle = \int_{k} |\alpha(k)|^{2}$$

Build a Recipe from Scalar Field Inflation

Define the appropriate coherent state $|\alpha\rangle = e^{\int_k \alpha(k)a_k^{\dagger} - \alpha^*(k)a_k} |0\rangle$

Classical value of the field = Expectation Value on coherent state $\phi_{\alpha}(x) \equiv \langle \alpha | \phi(x) | \alpha \rangle = \int_{k} \left(\alpha(k) e^{-ikx} + \alpha^{*}(k) e^{+ikx} \right) \,.$

Build a Recipe from Scalar Field Inflation

Define the appropriate coherent state $|\alpha\rangle = e^{\int_k \alpha(k)a_k^{\dagger} - \alpha^*(k)a_k} |0\rangle$

Classical value of the field = Expectation Value on coherent state

$$\phi_{\alpha}(x) \equiv \langle \alpha | \phi(x) | \alpha \rangle = \int_{k} \left(\alpha(k) e^{-ikx} + \alpha^{*}(k) e^{+ikx} \right) \,.$$

 $\label{eq:classical perturbation fields = Expectation Value on a perturbed \\ \ coherent state$

$$\langle \alpha + \delta \alpha | \phi(x) | \alpha + \delta \alpha \rangle = \phi_{\alpha}(t) + \phi_{\delta \alpha}(x, t)$$

Perturbed quantities in terms of operator on perturbed state

$$\delta G_{\mu\nu} = 8\pi G \left\langle \alpha + \delta \alpha \right| \widehat{T_{\mu\nu}(\phi)} \left| \alpha + \delta \alpha \right\rangle \left|_{O(\delta\alpha)} \right\rangle$$

Build a Recipe from Scalar Field Inflation

Define the appropriate coherent state $|\alpha\rangle = e^{\int_k \alpha(k)a_k^{\dagger} - \alpha^*(k)a_k} |0\rangle$

Classical value of the field = Expectation Value on coherent state

$$\phi_{\alpha}(x) \equiv \langle \alpha | \phi(x) | \alpha \rangle = \int_{k} \left(\alpha(k) e^{-ikx} + \alpha^{*}(k) e^{+ikx} \right) \,.$$

 $\label{eq:Classical perturbation fields = Expectation Value on a perturbed \\ \ coherent state$

$$\langle \alpha + \delta \alpha | \phi(x) | \alpha + \delta \alpha \rangle = \phi_{\alpha}(t) + \phi_{\delta \alpha}(x, t)$$

Perturbed quantities in terms of operator on perturbed state

$$\hat{\zeta}(x) = -\frac{\rho}{3\langle \alpha | \rho + p | \alpha \rangle} \qquad P_{\zeta} = \lim_{y \to x} \langle \alpha + \delta \alpha | \hat{\zeta}(x) \hat{\zeta}(y) | \alpha + \delta \alpha \rangle |_{O(\delta\alpha)^2}$$

Build a Recipe from Scalar Field Inflation

 $\label{eq:classical perturbation fields = Expectation Value on a perturbed \\ \ coherent state$

$$\langle \alpha + \delta \alpha | \phi(x) | \alpha + \delta \alpha \rangle = \phi_{\alpha}(t) + \phi_{\delta \alpha}(x, t)$$

Perturbed quantities in terms of operator on perturbed state

$$\hat{\zeta}(x) = -\frac{\rho}{3\langle \alpha | \rho + p | \alpha \rangle} \qquad P_{\zeta} = \lim_{y \to x} \langle \alpha + \delta \alpha | \hat{\zeta}(x) \hat{\zeta}(y) | \alpha + \delta \alpha \rangle |_{O(\delta\alpha)^2}$$

Fermionic coherent state? - Too naive

$$|\alpha\rangle = e^{\int d^3k \,\alpha(k)a_k^{\dagger} - \alpha^*(k)a_k} |0\rangle$$
 -Not in Fock Space

Fermionic coherent state? - Too naive

$$\left|\alpha\right\rangle = e^{\int d^{3}k \,\alpha(k)a_{\kappa}^{\dagger} - \alpha^{*}(k)a_{k}} \left|0\right\rangle$$

Generalized SU(2) coherent state (pairs) $|\alpha\rangle = e^{\int d^{3}k \,\alpha(k)a^{\dagger}_{k\uparrow}b^{\dagger}_{-k\downarrow} - \alpha^{*}(k)a_{k\uparrow}b_{-k\downarrow}} |0\rangle \iff |\vec{n}\rangle$ $J_{1} = \frac{1}{2} (a^{\dagger}b^{\dagger} + h.c.)$ $J_{2} = -\frac{i}{2} (a^{\dagger}b^{\dagger} - h.c.)$ $J_{3} = \frac{1}{2} (a^{\dagger}a + b^{\dagger}b - 1)$ Density of pairs $\langle \vec{n} | \, \vec{\psi}\psi \, | \vec{n} \rangle = \langle \vec{n} | \int_{k} \vec{\xi} \cdot \vec{J}_{k} \, | \vec{n} \rangle = \int_{k} \vec{\xi} \cdot \vec{n}_{k}$ Infinitesimal rotation around a finite one $|\vec{n} + \delta\vec{n}\rangle$

Fermionic coherent state? - Too naive

$$\left|\alpha\right\rangle = e^{\int d^{3}k \,\alpha(k)a_{\kappa}^{\dagger} - \alpha^{*}(k)a_{k}} \left|0\right\rangle$$

Generalized SU(2) coherent state (pairs)

$$|\alpha\rangle = e^{\int d^3k \,\alpha(k)a^{\dagger}_{k\uparrow}b^{\dagger}_{-k\downarrow} - \alpha^*(k)a_{k\uparrow}b_{-k\downarrow}} |0\rangle \iff |\vec{n}\rangle$$

Classical perturbations:

$$\delta G_{\mu\nu} = 8\pi G \left\langle \vec{n} + \delta \vec{n} \right| T_{\mu\nu}(\bar{\psi}, \psi) \left| \vec{n} + \delta \vec{n} \right\rangle |_{O(\delta\vec{n})}$$

Fermionic coherent state? - Too naive

$$\left|\alpha\right\rangle = e^{\int d^{3}k \,\alpha(k)a_{\kappa}^{\dagger} - \alpha^{*}(k)a_{k}} \left|0\right\rangle$$

Generalized SU(2) coherent state (pairs)

$$|\alpha\rangle = e^{\int d^3k \,\alpha(k)a_{k\uparrow}^{\dagger}b_{-k\downarrow}^{\dagger} - \alpha^*(k)a_{k\uparrow}b_{-k\downarrow}} |0\rangle \iff |\vec{n}\rangle$$

Compute relevant cosmological quantities:

$$P_{\zeta} = \lim_{y \to x} \left\langle \alpha + \delta \alpha \right| \hat{\zeta}(x) \hat{\zeta}(y) \left| \alpha + \delta \alpha \right\rangle |_{O(\delta \alpha)^2}$$

Inflation initial state?

Heavily rely on the selected quantum state estimate of the non-Gaussianities, power spectra of CMBR, tensor to scalar ratio parameter.

Inflation initial state?

Heavily rely on the selected quantum state estimate of the non-Gaussianities, power spectra of CMBR, tensor to scalar ratio parameter.

Bunch Davies vacuum (dS spacetime isometries, approach Minkowski vacuum in deep UV, time-independent, stationary state)

Generalization to Non-Bunch Davies vacuum (misleading name, excited initial state for inflation, most general solution of the mode equation, parametrize our ignorance on the pre-inflationary era)

Inflation initial state?

Generalization to Non-Bunch Davies vacuum (parametrize our ignorance on the pre-inflationary era)

 $u_k^{NBD}(\eta) = \alpha_k u_k^{BD}(\eta) + \beta_k u_k^{*BD}(\eta) \qquad |\alpha_k|^2 - |\beta_k|^2 = 1$

Equivalent to:

$$\tilde{a}_{\vec{k}}^{\dagger} = \alpha_k a_{\vec{k}}^{\dagger} + \beta_k a_{-\vec{k}} \qquad |0_{NBD}\rangle = \exp\left[\int_k \gamma(|\vec{k}|) a_{\vec{k}}^{\dagger} a_{-\vec{k}}^{\dagger} - \gamma^*(|\vec{k}|) a_{\vec{k}} a_{-\vec{k}}\right] |0_{BD}\rangle$$
$$\alpha_k = \cosh\left(\left|\gamma(|\vec{k}|)\right|\right) \qquad \beta_k = \frac{\gamma(|\vec{k}|)}{\left|\gamma(|\vec{k}|)\right|} \sinh\left(\left|\gamma(|\vec{k}|)\right|\right)$$

Suddhasattwa Brahma, PD, Antonino Marciano' - arXiv:1612.00760

Inflation initial state?

Generalization to Non-Bunch Davies vacuum (parametrize our ignorance on the pre-inflationary era)

 $u_{k}^{NBD}(\eta) = \alpha_{k} u_{k}^{BD}(\eta) + \beta_{k} u_{k}^{*BD}(\eta) \qquad |\alpha_{k}|^{2} - |\beta_{k}|^{2} = 1$

Equivalent to:

$$\tilde{a}_{\vec{k}}^{\dagger} = \alpha_k a_{\vec{k}}^{\dagger} + \beta_k a_{-\vec{k}} \qquad |0_{NBD}\rangle = \exp\left[\int_k \gamma(|\vec{k}|) a_{\vec{k}}^{\dagger} a_{-\vec{k}}^{\dagger} - \gamma^*(|\vec{k}|) a_{\vec{k}} a_{-\vec{k}}\right] |0_{BD}\rangle$$
$$\alpha_k = \cosh\left(\left|\gamma(|\vec{k}|)\right|\right) \qquad \beta_k = \frac{\gamma(|\vec{k}|)}{\left|\gamma(|\vec{k}|)\right|} \sinh\left(\left|\gamma(|\vec{k}|)\right|\right)$$

Exactly an SU(1,1) coherent state:

 $K_{+} = a_{\vec{k}}^{\dagger} a_{-\vec{k}}^{\dagger}$ $K_{-} = a_{\vec{k}} a_{-\vec{k}}$ $K_{3} = \frac{1}{2} \left(a_{\vec{k}}^{\dagger} a_{\vec{k}} + a_{-\vec{k}}^{\dagger} a_{-\vec{k}} + 1 \right)$

Most general (group theoretical) coherent state that is homogeneous and isotropic

Suddhasattwa Brahma, PD, Antonino Marciano' - arXiv:1612.00760

Probe the SU(N,M) coherent state case, the generators in a Schwinger-like representation are:

$$\begin{aligned} -a_{k_i}^{\dagger} a_{k_{i'}} & \text{for } i', i = 1, \dots, n \\ a_{q_j} a_{q_{j'}}^{\dagger} & \text{for } j', j = 1, \dots, m \end{aligned} \qquad \begin{aligned} a_{k_i}^{\dagger} a_{q_j}^{\dagger} & \text{for } \begin{cases} i = 1, \dots, n \\ j = 1, \dots, m \end{cases} \\ a_{k_i} a_{q_j} & \text{for } \begin{cases} i = 1, \dots, n \\ j = 1, \dots, m \end{cases} \end{aligned}$$

Most general form of a coherent state up to irrelevant phases

$$\exp\left[\int_{k_i,q_j} \alpha(k_i,q_j) a_{k_i}^{\dagger} a_{q_j}^{\dagger} - \alpha^*(k_i,q_j) a_{k_i} a_{q_j}\right] |0\rangle$$

Invariance under translations fix $k_i = q_j$ Invariance under rotations fix $\alpha(k_i) = \alpha(|k_i|)$

$$\exp\left[\sum_{k_i} \int_{k_i} \alpha(|k_i|) a_{k_i}^{\dagger} a_{-k_i}^{\dagger} - \alpha^*(|k_i|) a_{k_i} a_{-k_i}\right] |0\rangle$$

Suddhasattwa Brahma, PD, Antonino Marciano' - arXiv:1612.00760

Conclusions

Introduced a new framework for cosmological perturbation based on coherent states.

- Reproduce the literature
- Generalization to non scalar species
- Fermion fields can indeed contribute to linear cosmological perturbation

Non Bunch-Davies vacuum (initial state for single scalar field inflation) can be interpreted as a SU(1,1) coherent state

• Generalization to other groups is not possible (not compatible with isotropy and homogeneity)