Computing Lorentzian Spin Foam Amplitudes: *Overview*

Pietro Dona'

Strenuous effort of S. Speziale gang (P.D. M. Fanizza, G. Sarno, P. Martin-Dussaud)

Loops 2017 Warsaw, Poland 7th July 2017

Questions?

Is it time for actual calculations? black hole, cosmology, modified dispersion relations [M. Christodoulou – Mon] [G. V. Stagno – Fri 5pm]

> How well we understand the semi-classical limit? $\frac{\text{check of existing analysis, meaning of large spin, extended}{[J. Barret et al. - '09-'10]}$

What's the semi-classical limit of KKL model? generalized EPRL, general valency SU(2) BF [B. Bahr et. al '16-'17]

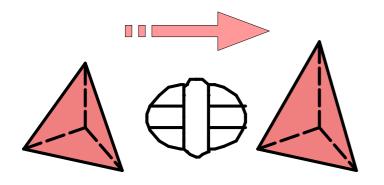
Is it necessary to renormalize Spin Foam? divergences, various models [B. Bahr group; D. Oriti group: M. Finocchiaro talk; B. Dittrich program] [A. Riello '13] [E. Livine, V. Bonzom and may others]

Decomposition of the Amplitude

SL(2,C) integral

[S. Speziale '16]

EPRL amplitude: $Z_{\mathcal{C}} = \sum_{j_f, i_e} \prod_f (2j_f + 1) \prod_v A_v (j_f, i_e) - \cdots$

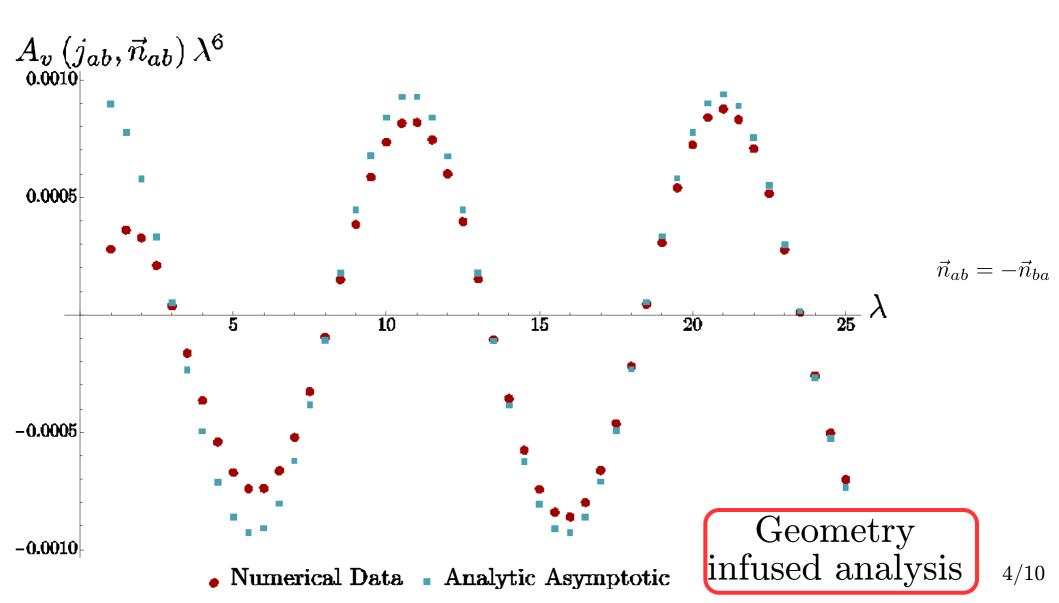

Zooming on an edge: j_{f}, i_{e} l_{fv}, k_{ev} $l_{fv'}, k_{ev'}$ j_{f}, i_{e} Booster $B_{4}(j_{f}, i_{e}, l_{fv}, k_{ev}; \gamma)$

Take at home message

We decomposed the EPRL amplitude into a superposition of SU(2) ones weighted by the Boosters (one per half-edge)

Y map

Properties of the Booster

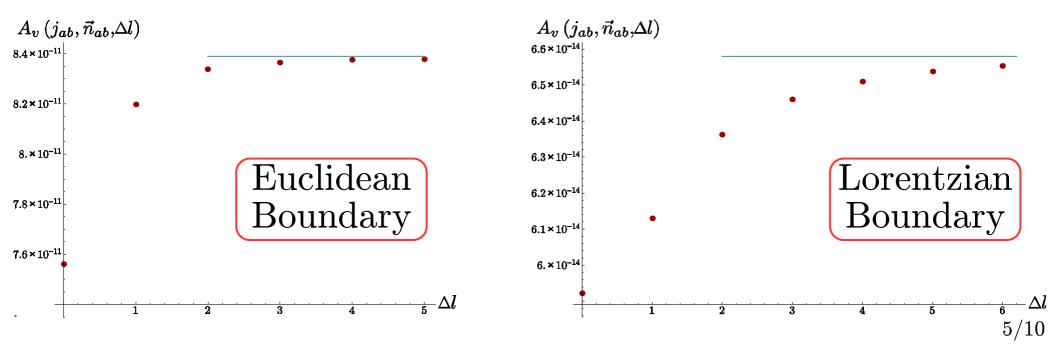

Relatively simple expression one dimensional well localized integral (boost)

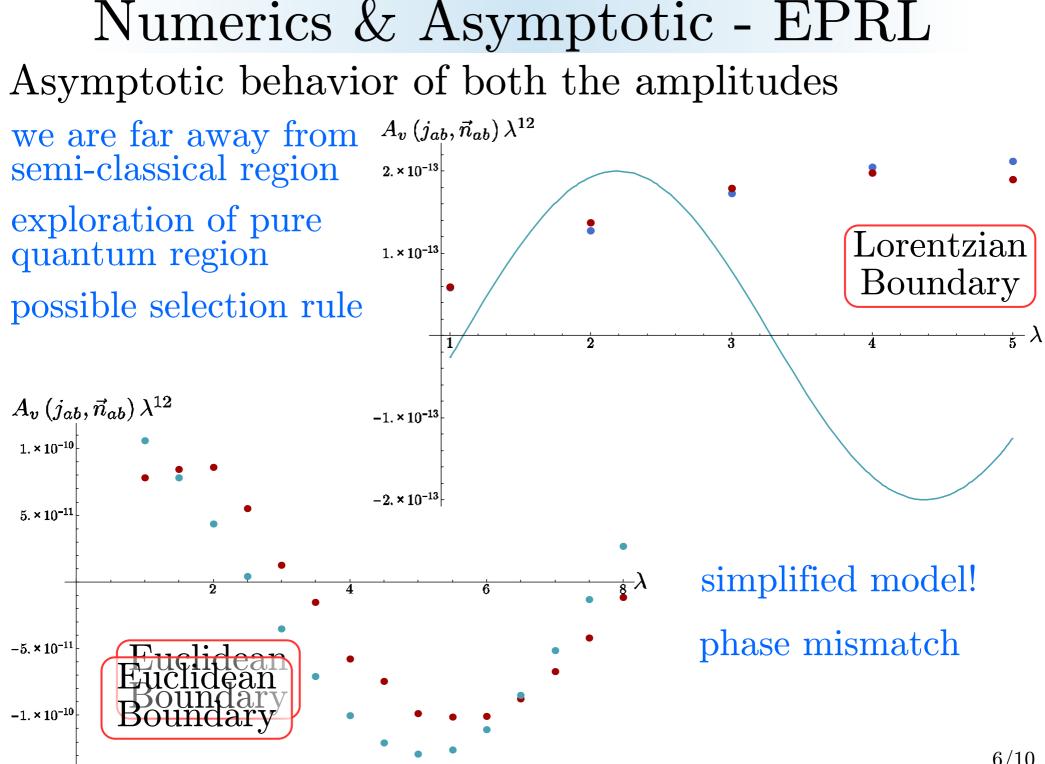
Sum over boost connecting two quantum tetrahedra intriguing semi-classical limit [wip see the talk of Pierre Martin-Dussaud – Today 6pm]

Select only particular configurations direction of the boost, isosceles configuration

$$\begin{array}{l} \textbf{Simplified Model} \\ \sum_{l_{fv}} \rightarrow l_{fv} = j_f \end{array}$$

Simplifications in the diagonal case peaked on the trivial boost ^[Puchta '13] numerical computation is much faster capture good features in some regime Numerics & Asymptotic - $SU(2)_{Talk Mon]}^{[M. Fanizza}$ First numerical confirmation of the asymptotic formula power law decay, frequency (Regge action), relative phase, access the semi-classical region at low spins [J. Barret et al. – '09-'10]

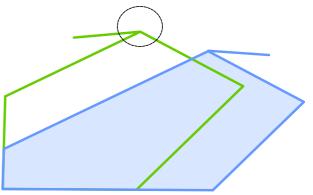


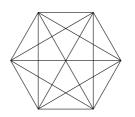

Numerics & Asymptotic - EPRL [G. Sarno Talk Tue]

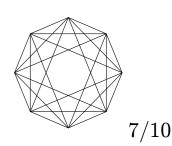
Two new layer of complication respect to SU(2)efficient computation of the Boosters infinite summation of configurations

Fast convergence

comeback of the simplified model shell-like ordering of the contributions needs for a lot of optimization

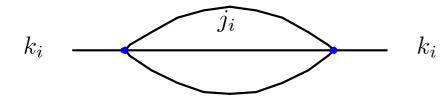



Numerics & Asymptotic - EPRL [G. Sarno - Tue]


Asymptotic analysis general valency vertex SU(2)

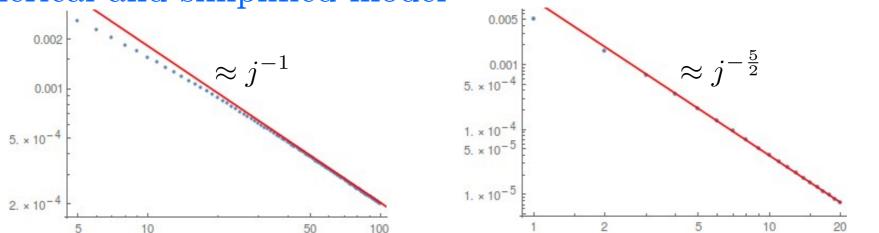
The amplitude generalization is straightforward the saddle point analysis generalize smoothly [B. Bahr et al.] Taxonomy of options

Dofs	$\begin{array}{c} \text{Geometry} \\ \text{type} \end{array}$	Saddle points
5L-6N	twisted	0
3L-3N	vector (anti-parallel)	1
?	conformal twisted (angle-matching)	2
Ε	Regge (shape-matching)	2
4N-10	Polytope (flat embedding)	2



Divergences

Self energy diagram is Log divergent (EPRL) [Riello '13] utilized the asymptotic formula other graphs?


It is possible to find a more systematic procedure? e.g. SU(2) BF theory in 3D

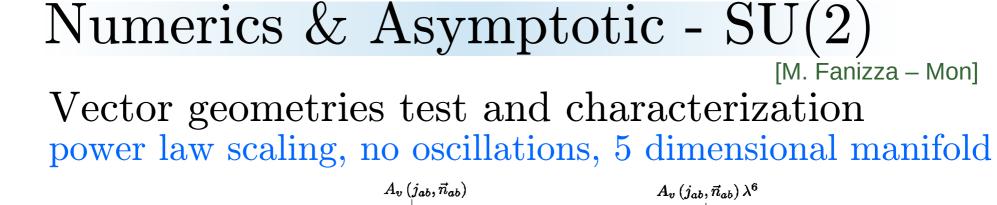
One triangular inequality per edge

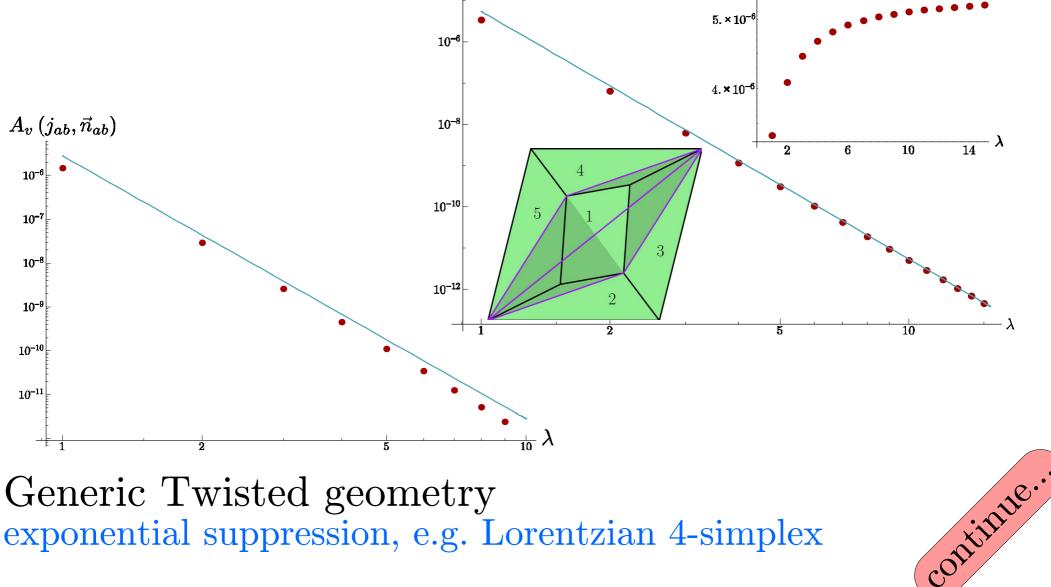
$$\sum_{j_1 j_2 j_3}^{\Lambda} d_{j_1}^{\mu} d_{j_2}^{\mu} d_{j_3}^{\mu} \left\{ \begin{array}{cc} k_1 & k_2 & k_3 \\ j_1 & j_2 & j_3 \end{array} \right\}^2 \approx \sum_{\lambda}^{\Lambda} \lambda^{3\mu} \frac{1}{\lambda} \approx \Lambda^{3\mu}$$

Non homogeneous scaling of the Booster numerical and simplified model

8/10

Divergences


		3D		$4\mathrm{D}$		
		Self Energy	14 Move	Self Energy	15 Move	
	BF	$\Lambda^{3\mu}$	$\Lambda^{4\mu-1}$	$\Lambda^{3(2\mu+1)}$	$\Lambda^{5(2\mu+1/2)}$	
	EPRLs	$\Lambda^{3(\mu-2)}$	$\Lambda^{4(\mu-3)-1}$	$\Lambda^{6\mu+3-4\cdot5}$	$\Lambda^{5(2\mu+1/2-5)}$	
	EPRL	$\log \Lambda$	Convergent	$* \log \Lambda$		
A_s	$A_{SE}\left(\Lambda ight)$ SE EPRLs		$A_{S_{ert} E}$ (/	Λ) SE I	EPRL	
2.5011×1 2.501×1	5011×10° 32×10°0 2:501×10° 31×10°0					
2.5009 ×1 2.5008 ×1			3.×10 ⁻¹⁰	•		
2.5007 ×1	σ ⁹		2.9 × 10 ⁻¹⁰	•	,	
	20 40	0 60 80	100	10 20	30 40	


Answers!

Is it time for actual calculations! [G. Sarno, S. Speziale, G. V. Stagno, numerical access to spin-foam cosmology [G. Sarno, S. Speziale, G. V. Stagno, to appear soon- talk today 5pm]

We understand quite well the semi-classical limit! [PD, M. Fanizza, G. Sarno, S. Speziale hopefully very soon] Numerical confirmation of Barrett analysis, more geometrical infused, large spin can be quite small, hints on the flatness problem

Not yet at the semi-classical limit of KKL model generalized EPRL, general valency SU(2) BF [PD, M. Fanizza, G. Sarno, S. Speziale hopefully very soon] Back of the envelope estimation of divergencies [PD, S. Speziale, warming up with simpler models work in progress] Thank you for your attention!

Generic Twisted geometry exponential suppression, e.g. Lorentzian 4-simplex